Data Mining in Pharmaceutical Marketing and Sales Analysis

Andrew Chabak
Rembrandt Group
Contents

- What is Data Mining?
- Data Mining vs. Statistics: what is the difference?
- Why Data Mining is important tool in pharmaceutical marketing research and sales analysis?
- Case Study
What is the Data Mining?

- “The magic phrase to put in every funding proposal you write to NSF, DARPA, NASA, etc”

- “Data Mining is a process of torturing the data until they confess”

- “The magic phrase you use to sell your…..
 - database software
 - statistical analysis software
 - parallel computing hardware
 - consulting services”
Data Mining

- Data Mining
 - is a cutting edge technology to analyze diverse, multidisciplinary and multidimensional complex data
 - is defined as the non-trivial iterative process of extracting implicit, previously unknown and potentially useful information from your data

- Data mining could identify relationships in your multidimensional and heterogeneous data that cannot be identified in any other way

- Successful application of state-of-the-art data mining technology to marketing, sales, and outcomes research problems (not to mention drug discovery) is indicative of analytic maturity and the success of a pharmaceutical company
Data Mining and Related Fields

Is Data Mining extension of Statistics?
Statistics vs. Data Mining: Concepts

<table>
<thead>
<tr>
<th>Feature</th>
<th>Statistics</th>
<th>Data Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Problem</td>
<td>Well structured</td>
<td>Unstructured / Semi-structured</td>
</tr>
<tr>
<td>Inference Role</td>
<td>Explicit inference plays great role in any analysis</td>
<td>No explicit inference</td>
</tr>
<tr>
<td>Objective of the Analysis and Data Collection</td>
<td>First – objective formulation, and then - data collection</td>
<td>Data rarely collected for objective of the analysis/modeling</td>
</tr>
<tr>
<td>Size of data set</td>
<td>Data set is small and hopefully homogeneous</td>
<td>Data set is large and data set is heterogeneous</td>
</tr>
<tr>
<td>Paradigm/Approach</td>
<td>Theory-based (deductive)</td>
<td>Synergy of theory-based and heuristic-based approaches (inductive)</td>
</tr>
<tr>
<td>Signal-to-Noise Ratio</td>
<td>STNR > 3</td>
<td>0 < STNR <= 3</td>
</tr>
<tr>
<td>Type of Analysis</td>
<td>Confirmative</td>
<td>Explorative</td>
</tr>
<tr>
<td>Number of variables</td>
<td>Small</td>
<td>Large</td>
</tr>
</tbody>
</table>
Statistics vs. Data Mining: Regression Modeling

<table>
<thead>
<tr>
<th>Feature</th>
<th>Statistics</th>
<th>Data Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of inputs</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Type of inputs</td>
<td>Interval scaled and categorical with small number of categories (percentage of categorical variables is small)</td>
<td>Any mixture of interval scaled, categorical, and text variables</td>
</tr>
<tr>
<td>Multicollinearity</td>
<td>Wide range of degree of multicollinearity with intolerance to multicollinearity</td>
<td>Severe multicollinearity is always there, tolerance to multicollinearity</td>
</tr>
<tr>
<td>Distributional assumptions, homoscedasticity, outliers, missing values</td>
<td>Intolerance to distributitional assumption violation, homoscedasticity, Outliers/leverage points, missing values</td>
<td>Tolerance to distributional assumption violation, outliers/leverage points, and missing values</td>
</tr>
<tr>
<td>Type of model</td>
<td>Linear / Non-linear / Parametric / Non-Parametric in low dimensional X-space (intolerance to uncharacterizable non-linearities)</td>
<td>Non-linear and non-parametric in high dimensional X-space with tolerance to uncharacterizable non-linearities</td>
</tr>
</tbody>
</table>
What is an unstructured problem?

<table>
<thead>
<tr>
<th>Definition</th>
<th>Well-structured Business Problem</th>
<th>Unstructured Business Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Can be described with a high degree of completeness</td>
<td>Cannot be described with a high degree of completeness</td>
</tr>
<tr>
<td></td>
<td>Can be solved with a high degree of certainty</td>
<td>Cannot be resolved with a high degree of certainty</td>
</tr>
<tr>
<td></td>
<td>Experts usually agree on the best method and best solution</td>
<td>Experts often disagree about the best method and best solution</td>
</tr>
<tr>
<td></td>
<td>Can be easily and uniquely translated into quantitative counterpart</td>
<td>Cannot be easily and uniquely translated into quantitative counterpart</td>
</tr>
<tr>
<td>Goal</td>
<td>Find the best solution</td>
<td>Find reasonable solution</td>
</tr>
<tr>
<td>Complexity</td>
<td>Ranges from very simple to complex</td>
<td>Ranges from complex to very complex</td>
</tr>
</tbody>
</table>
| **Example** | Project: Sample size calculation
Key business question: what is the physician sample size (PCP vs. OBGYN) to detect five script difference of Product A. sales?
How to translate this business question into quantitative counterpart?
No data
No variables | Project: Customer Feedback Study
Key business question: Is there any relationship between customer perception and performance?
How to translate this business question into quantitative counterpart?
Data: 800 observations/interactions and 400 variables/attributes
Variables are differently scaled |
What are differences between Data Mining and Statistics?

- Statistical analysis is designed to deal with well-structured problems:
 - Results are software and researcher independent
 - Inference reflects statistical hypothesis testing

- Data mining is designed to deal with unstructured problems
 - Results are software and researcher dependent
 - Inference reflects computational properties of data mining algorithm at hand
Is Data Mining extension of Statistics?

- Data Mining and Statistics: mutual fertilization with convergence

- **Statistical Data Mining** (Graduate course, George Mason University)

- **Statistical Data Mining and Knowledge Discovery (Hardcover)** by Hamparsum Bozdogan (Editor)
 - An overview of Bayesian and frequentist issues that arise in multivariate statistical modeling involving data mining

- **Data Mining with Stepwise Regression** (Dean Foster, Wharton School)
 - use interactions to capture non-linearities
 - use Bonferroni adjustment to pick variables to include
 - use the sandwich estimator to get robust standard errors
When data mining technology is appropriate?

Data mining technology is appropriate if:

- The business problem is unstructured
- Accurate prediction is more important than the explanation
- The data include the mixture of interval, nominal, ordinal, count, and text variables, and the role and the number of non-numeric variables are essential
- Among those variables there are a lot of irrelevant and redundant attributes
- The relationship among variables could be non-linear with uncharacterizable nonlinearities
- The data are highly heterogeneous with a large percentage of outliers, leverage points, and missing values
- The sample size is relatively large

Important marketing, sales, and outcomes research studies have the majority of these features
Accurate prediction is more important than the explanation

"I’m a little surprised, with such extensive experience in predictive analysis, you should’ve known we wouldn’t hire you,“
Case Study: Effectiveness Evaluation of Vaccine Sales Force

- New launched vaccine (10 months in marketplace)
- Sales force structure: two sales team
 - Team_1
 - Team_2
- Some locations are visited only by Team_1 (1-up promotion), others – by both teams (2-up promotion)
- Promotion is on doctors/HCP level, but sales is on location level
- Business question: What is the effectiveness of 2-up promotion?
Dependent Variables and Study Design

- **Dependent variables (criteria to judge):**
 - Total dosage purchased (shipped or ordered?)
 - Total dosage purchased per promotion dollar
 - Probability of making a purchase
 - Time to the first purchase
 - Frequency of purchase, etc.

- **Study Design:**
 - Test (2-up promotion locations) – Control (1-up promotion locations)

- Consider Vaccine sales as two criteria problem:
 - Estimate outcome for Test and Control groups, taking into account:
 - difference in sales
 - difference in promotion cost

- Use pre-period data to match Test and Control groups and post-period data to compare sales and promotion cost
Independent Variables

- 47 input variables
 - Demographics of a location
 - Geography, specialty, potentials, potential decile, average age, reimbursement, believes, etc.
 - Promotion activities
 - Number of direct interactions with HCP by Team_1
 - Number of direct interactions with HCP by Team_2
 - Percentage of direct interaction with decision maker by Team_1
 - Percentage of direct interaction with decision maker by Team_2
 - Number of phone interactions with HCP by Team_1
 - Number of phone interactions with HCP by Team_2, etc.
Variables Distribution

Private Dosage Potential

Public Dosage Potential

Number of Sales Calls

Vaccine Dosage Sales
Methodology

- Form Test - Control groups, using only pre-period data and propensity score methodology with greedy one-to-one matching technique on propensity score.

- Develop models for the post-period data for total vaccine sales, controlling for:
 - “location demographics” variables
 - promotion variables in pre-period
 - sales in pre-period

- Estimate the difference in sales for Test and Control groups, taking into account promotion cost.
Propensity Score

- Propensity score
 - is the predicted probability of receiving the treatment (probability of belonging to a test group)
 - is a function of several differently scaled covariates

- Propensity_Score = \(f(\text{location demographics variables, promotion variables, sales variables}) \)
 \[0 < f < 1 \]

where \(f \) is a non-parametric non-linear multivariate function

- **A sample matched on propensity score will be similar across all covariates used to calculate propensity score**
Propensity score with SAS EM

Neural Net was the best modeling paradigm
Finding and Business Implication

There is no algorithmically significant difference in sales between Test and Control groups, but promotion cost for Control group is two times lower than for Test group. In other words, 2-up structure does not produce desired/expected outcome for Vaccine performance.
Phone call / Sales call response curve for Vaccine sales, constructed by TreeNet

Number of Purchases has a strong diminishing returns effect when the number of sale calls becomes greater than thirty five and the number of Phone calls becomes greater than 2.
Phone call and Sales call response surface for Vaccine sales, constructed by TreeNet

Sales call is the most effective when a location gets two Phone calls

Number of Purchase has a strong diminishing returns effect when the number of Sales calls becomes greater than thirty five and the number of Phone calls becomes greater than 2
Reference

- Padhraic Smyth (2000), An Introduction to Data Mining, Elumetric.com Inc